• Contact US
  • Mail
  • Enquiry

Nitrogen gas use in Bottling industry as a counter pressure gas

Posted on: 5 Jan, 2016   |   With: 0 Comments
Category:  MVS PSA Nitrogen Generators, Nitrogen

WHITE PAPER

TITLE: USING NITROGEN GAS IN PLACE OF CARBON DIOXIDE GAS
AS A COUNTER PRESSURE IN BOTTLING INDUSTRY
FOR COST REDUCTION AND REDUCED ENVIRONMENTAL IMPACT

  1. Executive Summary
  2. Current Scenario – Carbon Dioxide gas use in beverage bottling plants
  3. Concerns with Carbon Dioxide gas usage in counter pressure process
  4. Global consideration of Nitrogen gas as CO2 replacement
  5. Benefits of nitrogen over CO2 as counter pressure gas
  6. Technical Impact Analysis – Nitrogen gas versus CO2 cylinders
  7. Cost impact analysis

    1. Executive Summary

Beverage bottlers processing carbonated beverages extensively use CO2 – most obviously for carbonation process, but also in a process for maintaining filler bowl counter pressure during the bottling process. Use of CO2 in this process contributes not only to greenhouse gases, but also is a significant cost to the bottler. Nitrogen has already been proven in different parts of the world as an excellent replacement to CO2 in the bottling process and can be done in a significantly cheaper way. This paper presents the findings and summarizes the benefits a bottler may enjoy in switching from CO2 to Nitrogen.

2. Current Scenario – Carbon Dioxide gas use in beverage bottling plants

Beverage bottling plants use carbon dioxide gas in two distinct operations. CO2 gas lines are different for both the processes:

a) Carbonation Process – In this process CO2 is mixed with beverages. This dissolved carbon dioxide creates carbonic acid, which adds a pleasantly acidic flavor and an interesting mouth feel.

b) Filler Bowl Counter Pressure Process – In the process of beverage carbonation, CO2 is absorbed under pressure. The CO2 will remain absorbed in solution while it is kept under pressure.

The pressure required to maintain CO2 in the beverage depends on the content required in the beverage and the temperature. Higher CO2 contents require higher pressure at a given temperature and conversely, lower temperatures for a given content require lower pressures.

The filler bowl must, therefore, be kept under the appropriate pressure during the filling process by use of an inert gas. This inert gas itself, typically CO2, does not get further absorbed in the already carbonated beverage solution.

3. Concerns with Carbon Dioxide gas usage in counter pressure process

In the filling bowl counter pressure operation to establish an equilibrium pressure inside the bottle, carbon dioxide gas is used and released into the atmosphere on a continuous basis.

It is commonly known and understood that CO2 is a harmful greenhouse gas and it’s increasing concentration in the environment, a major environmental concern. CO2 contributes to extra heat trap in the atmosphere and thereby contributing to ‘Global Warming’.

4. Global consideration of Nitrogen gas as CO2 replacement

According to prior submissions of projects to United Nations Framework Convention on Climate Change, (UNFCCC)[1], under program of Clean Development Mechanism (CDM), a project to replace the Carbon Dioxide Gas with Nitrogen Gas in only filling operation for filler bowl counter pressure of a beverage bottling plant in Philippines was approved and implemented.

In the afore-mentioned project nitrogen gas replaced the carbon dioxide gas i.e. used in filling operation as a counter pressure. For the other use of carbon dioxide gas such as for mixing the Carbonated Soft Drinks (CSD) line, it was not included & not affected.

5. Benefits of nitrogen over CO2 as counter pressure gas

There are several technical and commercial benefits of using Nitrogen as a counter pressure gas instead of CO2:

  • Due to CO2 being discharged into atmosphere continuously in the counter pressure process, use of nitrogen in place of CO2 helps in reduction of greenhouse gas emissions.
  • Nitrogen and CO2 are both inert, and neither gas is absorbed into the carbonated beverage. Hence use of nitrogen in place of CO2 is acceptable without any technical concerns.
  • Nitrogen gas is easily produced at premises by using an on-site gas generator, such as those offered by MVS Engineering. Nitrogen gas generators work on the principle of separating and concentrating 78% nitrogen present in atmosphere to a higher purity level of 99% and above. Hence, nitrogen is very simple to produce and can be produced on-demand basis as the generator takes only 1-2 minutes to start production.
  • CO2 is purchased from market in cylinders and the cost of each cylinder varies from location to location and also quite high. Nitrogen production using an on-site generator is extremely low and is only the cost of power required by air compressor. Please refer to cost implication section of this article for detailed cost benefits.
  • Installing nitrogen generator and producing the gas on-demand, you will avoid the cost and hassles of always ordering and delivering CO2 cylinders by trucks.
  • By replacing with nitrogen, CO2 cylinder handling within premises is completely avoided. This is an OHSA (health and safety) benefit, as bulk cylinder handling is a human task and prone to errors and failures.
  • Storing large amount of CO2 in cylinders is a concern as large quantities of CO2 may leak and create asphyxiation hazard. Nitrogen is produced on-demand and large quantities of nitrogen are typically not stored or if stored, the storage tank is installed outdoors, where leak of nitrogen will easily dissipate without creating asphyxiation hazard.
  • Due to reduction in CO2 emissions, another important benefit beverage industries can get are of Certified Emission Reduction (CER) credits. These CERs can be traded and sold and used by industrialized countries to meet a part of their emission reduction targets under Kyoto protocol.
  • Beverage bottlers interested in nitrogen generator for CO2 replacement may consider applying for Adaptation Fund. It is an international fund that finances projects and programs aimed at helping developing countries to adopt to the harmful effects of climate change. It is setup under the Kyoto protocol of the UNFCCC.

 

  • 6. Technical Impact Analysis – Nitrogen gas versus CO2 cylinders


    1. We present below an un-biased comparison of producing nitrogen gas on-site as compared to using CO2 in cylinders purchased from the market.

Impact CharacteristicOn-site production of Nitrogen GasUsing Carbon Dioxide Gas in cylinders
Environmental impactPower is required to compress the air using an electrical air compressor. The compressed air is then passed through a nitrogen extraction unit, which extracts and purifies the already 78% atmospheric nitrogen. If the electricity used is from the grid, and in-turn if the grid power is supplied using conventional fossil fuels, then the carbon emissions of this electricity generation should be taken into account.CO2 used from cylinders as the counter pressure gas is directly discharged into atmosphere and hence the environmental impact can be directly calculated from the total volume of CO2 used in the industry.
Indirect environmental impact due to truckingNitrogen gas is produced on-site and hence there are no associated truck emissions that need to be considered.Trucks or lorries, if used, to transport the cylinders from the gas merchant to the consumer, also contribute to GHG due to their associated emissions. When calculating the environmental impact, these emissions also have to be considered.
Cost impactOnly electricity consumption cost is required to produce nitrogen gas a Nitrogen generator, such as those offered by MVS Engineering. The cost of electricity is significantly lower than the cost of purchasing the same quantity of CO2 or even Nitrogen in cylinders.CO2 or Nitrogen delivered in cylinders is significantly higher than production of Nitrogen on-site.
Space requirementNitrogen gas generator requires a small footprint and can be easily installed in the premises. Typically, the space required for stocking bulk cylinders is quite sufficient for installing the nitrogen generator.For carbon dioxide gas availability the company should plan and manage their cylinders in stock. To ensure that the bottling line does not stop, the companies maintain a significant stock of CO2 cylinders. Large stock of cylinders requires a large ventilated space and storage area footprint is similar to that of a nitrogen generator.
Availability managementNitrogen gas is produced on-demand and may be stored in a small storage tank to ensure continuous uninterrupted supply of nitrogen. The nitrogen generator turns on and off automatically as per usage of gas and no manual handling is required.Empty cylinders have to be removed and filled cylinders reconnected to the manifold on a continuous basis throughout the day. This is a very laborious task and un-avoidable when using cylinder supplied CO2.
Leakage hazardNegligible chances of leakage of nitrogen gas as only a small volume of Nitrogen is stored for on-demand availability and the gas is stored at a low pressure, typically, lower than 10 bar.Cylinders generally present a high hazard risk of leakage as the gas stored is at a pressure of 150-200 bar pressure and also repeated handling of cylinders makes them vulnerable to leakage.
Maintenance of equipmentNitrogen gas generators will require periodic maintenance. Maintenance is generally accomplished in a total of 4-hours annually and fairly simple such as filter cleaning, replacement, oil replacement in air compressor etc.Manifolds will have to be periodically pressure tested to ensure there are no leakages developed over repeated use.

2. We must also calculate the emission reduction due to avoidance of CO2 use and present a case below on basis of certain data presented earlier.

S.No.No. Of Cases/Year Production,
(1 case= 5.678 ltrs)
Estimation of baseline emissions
‘A’
(tCO2e)
Estimation of Project emission
‘B’
(tCO2e)
Estimation of Emission reduction
‘C=A-B’
(tCO2e)
1100 million cases/year, (567.8 million ltrs/year)4628.55345.054283.5
2182 million cases/year, (1033.4 million ltrs/year)84246287796
3200 million cases/year, (1630.34 million ltrs/year)9257.10690.108567
4300 million cases/year, (2445.516 million ltrs/year)13885.661035.1612850.05

7. Cost impact analysis

In order to understand how beverage bottlers may benefit from use of Nitrogen in place of carbon dioxide as a counter pressure gas, we must consider the cost of CO2 in cylinders and then compare it against the cost of nitrogen production by an onsite nitrogen generator.

a) Cost of Carbon Dioxide Gas purchased by Cylinders

Present rate of CO2 gas cylinders in Indian market = Rs 50 INR/Kg of CO2 gas.

1 Kg of CO2 gas = 0.5058 Nm3 of CO2 gas, or

1 Nm3 of CO2 gas = 1.97 Kg of CO2 gas

Hence, the cost of 1 Nm3 of CO2 gas in cylinder can be calculated as

1 Nm3 CO2     = 1.97 Kg of CO2 gas x Rs 50 INR/kg CO2.

1 Nm3 CO2= Rs. 98.85 /Nm3 of CO2

b) Cost of Nitrogen gas produced onsite using gas generator

To produce nitrogen gas from an onsite gas generator requires electricity to operate the air compressor and this is the primary variable cost of operation.

For producing 1 Nm3 Nitrogen gas we require only 0.5 KWH electricity power.

If we consider industrial electricity rate of around Rs. 7 / kWh, the production cost of nitrogen by generator can be estimated as Rs 3.50 INR/Nm3

ConsumptionAnnual spend on cylinders
(Cost of CO2 / Nm3 x 7 Nm3 x cylinders per day x 350 days)
Annual spend to produce nitrogen
(Cost of N2 / Nm3 x 7 Nm3 x cylinders per day x 350 days)
Savings per annum
10 cylinders / day!ERROR! undefined variable 'rs'!ERROR! undefined variable 'rs'Rs. 23.28 Lacs
15 cylinders / day!ERROR! undefined variable 'rs'!ERROR! undefined variable 'rs'Rs. 34.91 Lacs
20 cylinders / day!ERROR! undefined variable 'rs'!ERROR! undefined variable 'rs'Rs. 46.55 Lacs

Leave a Reply

Your email address will not be published. Required fields are marked *

sixteen + five =

Enquiry

Product Family *

Product*

Captcha

captcha